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Abstract. A new set of covariant field equations for the interacting charge-monopole 
systems have been obtained which treats the string singularities of the electromagnetic 
potentials dynamically. The nonrelativistic monopole potentials are derived from the 
covariant theory. 

1. Introduction 

Several aspects of the otherwise remarkable and beautiful theory of magnetic mono- 
poles (Dirac 1931, 1948) have been the subject of continued criticisms and contro- 
versies, in particular concerning the covariant form of the corresponding field theory 
(Usachev, 1973). 

I t  becomes immediately clear that theory cannot be formulated as a standard field 
theory of the three interacting fields A,, and x, representing the electromagnetic, 
the electric and the magnetic charge fields, respectively. The problem lies in the 
physical and mathematical significance of singular electromagnetic potentials which 
are not present in the usual field theories. This is a new feature distinguishing this 
theory from all other field theories we know. 

The statement is often repeated that the charge quantisation condition makes the 
string singularities of the potential A ,  unobservable. But the story does not end here. 
For one thing, the charge quantisation depends essentially on the type of singularities 
assumed, and there is complete freedom in the choice of the singularities (Barut 1977, 
Barut and Schneider 1976). Then one has to deal with the vanishing of the elec- 
tromagnetic current on the singularities in a dynamical and covariant way. 

Dirac (1948) already in his classical field theory, fully aware of this problem, 
introduced, besides the potential A ,  (x), additional dynamical variables y, ( T ,  v), 
representing the coordinates of the extended singularities, for example stringlike. 
There is a manifestly covariant action which yields the electromagnetic field equa- 
tions, the equations of motion of electric and magnetic charges, as well as the 
equations of motion for the singularity surfaces. 

The purpose of this paper is to extend Dirac’s action principle to its logical 
completion, without the complication of the so called ‘Dirac veto’ (9: 2), and to 
formulate the corresponding quantum field equations. 

The equations for the singularity derived from the action principle tells us (Barut 
and Bornzin 1974, Balachandran 1976) that the electric charges respond to the 
singular potentials A,(x) in such a way that the normal component of the electric 
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current vanishes on the singularity surface, as it  should be, (Wentzel 1966). There are 
no other supplementary conditions, such as the Dirac veto. In this sense the 
singularities acquire a dynamical significance, although they are of electromagnetic 
nature, and their shape can be arbitrarily deformed by gauge transformation. 

The new field equations, when massive electric charges and massive magnetic 
charges are both represented by Dirac fields, for example, show one-dimensional 
nonlocality corresponding to a integration along the string singularity. We also derive 
the explicit form of the singular potential which as a special case reduces to the 
non-covariant singular potentials (Dirac 193 1, Schwinger 1966). 

The firm interpretation of the theory has been used elsewhere (Barut 1978, to be 
published, reply to Usachev 1973) to answer various other problems which arose in 
connection with the derivation of charge quantisation condition, spin-statistics 
connections, etc. 

We note finally that the problem of the Dirac veto has recently been discussed by 
Brandt and Primack (1977) in the context of the Wu-Yang formalism (1977) in 
dealing with singular potentials. In this formalism one uses different coordinate 
patches on different sides of the singularity string, as appropriate for manifolds which 
are not simply connected. However, one of the most important property of the 
charge-monopole system is the fact that such a system can have a total spin 1/2 even 
though both charges have spin 0. For this to happen it seems necessary to take into 
account fully the dynamical role of the string. 

2. Classical and quantum field equations 

By a covariant quantum field theory of the interacting electric and magnetic charges 
one means a rigorous and complete framework which incorporates the intuitive 
equations 

(1) p Y . v  - FE)y.' = - j,, - - k , ,  

where the field FZ:'"' has only the point singularities corresponding to the electric 
current j ,  and the current k, of magnetic monopoles. In field theory we wish to 
represent j ,  and k, by, for example, if both poles are spinors, 

In equation (2), g is a pseudoscalar. (Some authors use x-ypy5,y, but this is not 
essential for covariance considerations.) The classical analogue of equations (2) are 

where z ( s )  and w ( s )  are the world lines of the poles. 
A priori we wish of course to have a field theory in which only the fields +, x and 

the electromagnetic field A ,  enters, with no other dynamical variables. The elec- 
tromagnetic field in quantised theory must be described by a potential A ,  because of 
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minimal coupling. We are interested in a completely covariant action principle and 
Lagrangian field equations and require a theory with vector potential A,(x), as 
opposed to a canonical theory, for example, upon which we shall comment later (§ 5). 

It is here that the problem begins to differ from the usual quantum elec- 
trodynamics; the field satisfying equations (1) is not derivable from a potential. In the 
language of differential geometry the form F D  is not exact, i.e. not the differential of a 
form A. There is, however, a potential A, whose differential (i.e. curl) gives F:y 
everywhere except along some singularity surface A: 

FFy = A,, - A,.u - (4) 
where A,, (the dual of a tensor A,”) is zero everywhere except on A. We have 
intentionally labelled the singularity surface and the singular field by the same letter. 
The precise form of A and A,” will be given later. 

The potential A, naturally defines a new field FFv by 

A , ,  -A,,u =.vu. (5  ) 

Hence 

FFv = F:” +A,”. 
It follows from equations (l), (4), and (6 )  immediately that 

and 

k, = A,;y. (8) 
Equations (7) show that our starting equations (1) are atuomatically embedded in 

ordinary Maxwell equations (7), hence the notation FFFwel1. But this new maxwellian 
field has in addition to the electric current j,, the singular current j?lar which 
produces the singular field A,”, introduced in (4). 

The action S from which equations (1) and (7) and the equation of motion for the 
poles are derived is 

S = a J dx F:JD-u + J dx i,(X)Afi (XI  + s e  + sg,  (9 1 

where Se and S,  are the free actions of the electric and magnetic charges respective11 
In view of (6),  (9) can be rewritten as 

+ J dx j,(x)A”(x)+ Se + SE. 

- f J  dx , i , ~ ~ w  = - J dx A,;’A@ = J dx jpgAIr.  

(10 

The second term, by (5) and partial integration, is equivalent to 

(11) 

Thus, the interaction of the singular current jpg with the field A,, although not 
appearing explicitly in (9), is contained therein. The variation of A, in S leads 
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immediately to the Maxwell’s equations (7). For the electric charges we get, in the 
classical case, from (3) 

mez , ( s )  = eFr;”zv(s) ,  (12) 

[ y ’ ( - ia, - e A ,  ) - m , ] $ ( x )  = 0. 

and in quantum case from (2) 

(13) 

Both of these equations show that the charged particles respond also to the singular 
fields A,,, contained in A,, or its differential Fr,,. 

We cannot vary the coordinates of magnetic poles and those of ‘IFv independently, 
as they are coupled by equation (8). In fact (8) shows that k ,  is essentially the 
‘boundary’ of the singular field A,,,. In order to see this and in order to perform a 
proper variation, we now choose a form for A,”. All the equations up to now are 
independent of the choice of A,”. 

For a two-dimensional singularity surface 11 in the Minkowski space (i.e. world 
sheet of a string), we can write in the classical case 

where y ,  = Y,(T, a )  is the equation of the string in terms of the Lorentz invariant 
parameters 7 and U with y = a y / &  and y’  = a y / a a ,  i.e. A,”(x) is the differential 2-form 
(surface element) of A. In this case, we obtain, differentiating (14) and simplifying, 

where a1 and a2 are the two endpoints of the string, hence k ,  is the magnetic current 
of the two oppositely charged monopoles, at the ends of the string. For a single 
monopole, we can let one of the endpoints move to infinity. 

We then choose the equation of the string y, = Y,(T, a )  as the third independent 
field, and obtain from (10) with the help of ( l l) ,  for each endpoint 

w y ( 7 ) =  y,(q a = U,), i = 1, 2, 

The first of these equations (16), gives the expected equation of motion of monopoles 
which respond to the field E” (and not FM as was the case for the electric charges). 
The second, (17), states that the normal component of the electric current on the 
singularity surface must vanish, which is automatically satisfied because electric 
charges respond to the field F M  with singularities. 
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2.1. Remark on the Dirac veto and gauge invariance 

From equation (17) Dirac concluded that 

(e”,* +e*,, +R,,v)lx=y = 0.  

This is equivalent to 
D .U F,, / x = y  = j c r l x = y  = 0, 

which says that the electric current on the singularity sheet is zero, o r  ‘a string must 
never pass through a charged particle’. This is the origin of, what has been called 
subsequently, the Dirac veto. If this were the case, the string would be completely 
unphysical, and this Dirac wanted to achieve. This requirement is an  extra constraint, 
‘not derivable from the action’, hence not acceptable. We  see however that only the 
weaker condition (17) or  (17’) follows from the action principle, and this weaker 
condition is always satisfied. 

Because the current j ,  is gauge invariant but the string is deformable, one  might 
ask whether (17’) violates gauge invariance. Since we have introduced the string 
functions y,(a,  T )  as dynamical variables, and since y,, enters in the singular potential 
A ,  o r  F$, it follows from equations (12) or  (13) that the solution i,, or  $(x), of these 
equations will depend implicitly on the choice of y,. But condition (17’) is true for 
every choice of y r .  We have thus, in addition to the usual gauge invariance A,,+ 
A, + f , ,  under which j,, is of course gauge invariant, the additional transformations of 
changing the coordinates of the string (or reparametrisation of the string). The  action 
principle, hence all the equations that follow from it, admit these transformations, in 
particular equation (17’). 

2.2. Derivation of wave equations 

It remains only to derive the quantum version of (16). The quantisation of the string 
variables Y,(T, a) is a new problem and will depend on further physical considerations 
concerning the significance of the string. In the action (9), we have introduced mass 
terms at the endpoints only. It would be equally possible to introduce a mass 
distribution along the string. 

For the case where we wish to quantise the motion of the endpoints only-and thus 
to establish contact with the previous work-we proceed as follows: 

W e  choose a coordinate condition such that 

and then write 

yG(7 ,  a)= w”( t )+u” (a ) ,  (19) 

where u ” ( a )  is a spacelike four vector, u*(m1)  = 0 and u ” ( a 2 )  being associated with 
the two endpoints. Now equation (14) becomes 

= - g ]  S(x-w-u)dw,Adu, ,  
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or, with (3) and 2, 

A,”(x)= - J k,(x-u)Adu, 

and represents an integral of the magnetic current along the string. The differential of 
(21) gives again, as in (15), the magnetic currents at the endpoints: 

A,v.”(x)= - a”k,(X - u)Adu, J 

Note: The quantisation is performed in equation (21) by replacing k, with xy,x in 
analogy to the electric case. More precisely, to one end of the string (with mass) we 
associate a wavefunction; the wavefunction of the rest of the string is then indicated by 
the argument in x(x -U). I t  would also be possible to associate a wave functional to 
the whole string (cf P 4). 

The action terms containing the singularity including the endpoints are, according 
to (10) and (1 1): 

J J 

For the case that S ,  is a Dirac Lagrangian for a field x with mass mg, we obtain using 
(21) and varying with respect to i the equation: 

Collecting all the equations together, our final coupled equations for fields A,, 4 
and x, with the usual gauge condition 

A’”,, = 0, (25) 

are 

All three equations involve the singularity and we have a one-dimensional non- 
locality, an integration along the string. 
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Finally we give a solution of the third equation in (26) for the potential: 

a 
dx'$(x')y,$(x')D(x - x ' ) + g  dx' E,,A,kA(x'-u)~duP-D(x -x') .  I ax" 

(27) 

It is instructive to evaluate (27) for a special choice of the string. If we set the 
space-like vector as 

U, = (0 ,  (7r - a)Rk) ,  U; = (0, -Rk), (28) 

where n* is a unit vector, a a parameter and R a distance, we have for the space 
components of the singular part of potential A,, from (27), 

a 
Aj(x)=  griik J dx' ko(x'- u)Rn^'- D(x -x')  

axk 

a 
= gEijk I dx" k'(~'~)n^' J d a '  - D(X - U - x"), a' = (7r - a)R 

axk 

a S(Xo-X;j -jx-x"-cT'n^/) 
/x - x" - a'; 1 = gejjkn^' 1 dx" k '(x") 5 d a '  - 

a r k  
9 

which for R >> r simplifies to 

Ai(x)  = g 5 d3x" ko(x")Di(x -x", n*)  

here 
r x k  

r ( r  - ( r  . k))' 
D(r, k )  = 

for a single string and similarly, 

for N string. Equation (29) with (30') for N = 2, -A ( * ' ,  is precisely the potential 
introduced by Schwinger (1966) which we now see is a special case of the  covariant 
formula (27). 

3. Covariance and infinite-component wave equations 

A theory tells us what are the observables in that theory. In our case the action 
principle gives the following physical picture: We have electric charges interacting 
with pairs of magnetic monopoles which are at the endpoints of a magnetic flux line. 
For a single monopole the opposite pole may be thought to be at infinity, hence the 
flux line goes to infinity. The flux line is real although it has no inertia except the 
monopole masses at its endpoints and its shape can be chosen arbitrarily. I t  enters 
into the field theory through the space-like vector u @ ( a )  which must be treated as an 
additional dynamical variable, and must be transformed as a four vector under 
Lorentz transformations. The generators of the Lorentz transformations J," depend 
on u P ( a )  as well. In other words we have new realisations on J," in a function space 
whose elements vanish along the singularity surfaces, or equivalently in spaces with 
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new topologies, namely spaces cut along the singularity surfaces. (JWy as differential 
operators are singular because they contain singular potentials, hence they must act on 
functions which vanish at these singularities.) 

It is not unusual that a theory contains new ‘gauge coordinates’ of the type u w ( a ) .  
The Dirac theory of the spinning electron contains the vector y, which must transform 
like a vector but whose choice is arbitrary. Here the components of y,, are represen- 
ted by finite-dimensional matrices, in our case by functions over a real line segment CT, 
i.e. by infinite-dimensional matrices. In the infinite-dimensional Majorana equation, 
for example, T,’s are infinite-dimensional matrices. In both cases the new coordinates 
represent new internal degrees of freedom (spin or other internal degrees of freedom). 
I have discussed elsewhere in detail the relation of the string coordinates to spin 
(Barut 1974). 

In fact our equations ( 2 5 )  can be written as local infinite-component wave equa- 
tions. Introducing an operator 

K ” f ( x )  = f ( x  - u ) u P  d a  = (31) 
U1 

we can rewrite equations (26) as 

Note that x now has a spinor index cy and an infinite-component index A on which the 
operators K P  act: xaA(x) .  

Equations (32) are the set of field equations to be solved by Green function 
propagator techniques, or to be second quantised further by imposing commutation 
relations. The fields (I, and x enter in an assymmetric way due to the presence of 
singular strings. Of course we can equally well attach the string to the electric charges; 
the duality still holds. 

4. Generalisations 

We have assumed mass points at the endpoints of the strings and treated them as 
spinors in order to establish contact with other field theories. However, although 
charged particles are correctly described by Dirac spinors (I,, the magnetic singularities 
are new objects and their proper quantisation is still an open subject. We might for 
example put bosons at the endpoints, because a spin 1/2 state will emerge anyway for 
the charge-monopole system even if the monopole is a boson. Or, we may not put any 
mass points at all at the endpoints, or we may assume a mass distribution along the 
string. All these cases, and others, are possible and have to be considered. 

5. Conclusions 

We have developed the Lagrangian formalism of the charge-monopole field theory 
and obtained covariant field equations which involve necessarily integrations over the 
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singularity surfaces, in particular integrations along the string. The position of the 
singularity is immaterial given the endpoints. There seems to be no way of avoiding 
entirely the singularities which in the Dirac action principle must acquire a physical 
reality, as discussed in 9: 3.  Even in theories based on canonical formalism the 
singularity enters into the theory at the end in the same way (Villarroel 1976). 
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